Orange

Innovation

CATS: Contrastive learning for Anomaly detection in Time Series

2024 IEEE Conference on Big Data – Washington DC, USA

December 15 - 18, 2024

Joël Roman Ky^{1,2}, Bertrand Mathieu¹, Abdelkader Lahmadi², Raouf Boutaba³

Orange Innovation Lannion¹

Université de Lorraine, CNRS, LORIA²

David R. Cheriton School of Computer Science, University of Waterloo³

Outline

- ☐ 1. Context & Motivation
- ☐ **2. CATS**
- ☐ 3. Experimental results
- ☐ 4. Conclusion
- ☐ 5. Appendix

1. Context & Motivation

- Anomaly Detection (AD) is essential in a wide variety of applications.
 - AD reveals an importance for low-latency applications (Cloud Gaming or CloudVR) to be able to detect QoE deterioration as part of french ANR MOSAICO project.
- Current unsupervised AD techniques for time series have some limitations.
 - Low performance
 - Impact of data contamination
- Contrastive Learning (CL) proved its efficiency on many tasks on image, text and is now leveraged for time-series and network data.
- ☐ Contributions for time-series anomaly detection:
 - ☐ Use negative data augmentation techniques for time-series to be considered as anomalies (anomaly injection)
 - Consider temporal dependencies with a novel (Dynamic Time Warping) DTW-based temporal loss

Self Supervised Contrastive

2. CATS: Contrastive learning for Anomaly detection in Time Series

2-1. Temporal Contrastive Learning (TCL)

- Dynamic Time Warping (DTW): a similarity measure between time series that seeks for the temporal alignment that minimizes Euclidean distance between aligned series.
 - ☐ However, DTW is not differentiable.
 - Soft-DTW was introduced using the soft-min operator to make DTW differentiable.
- ☐ TCL learns a temporal representation using a triplet loss with Soft-DTW and is defined as follows:

$$L_{TCL} = \sum_{i=1}^{N} \max(d(h_i, h_i^+) - d(h_i, h_i^-) + m, 0)$$

$$d\big(h_i,h_j\big) = softDTW\big(h_i,h_j\big) - \frac{1}{2}(softDTW(h_i,h_i) + softDTW(h_j,h_j))$$

2-2. Global Contrastive Loss (GCL)

- GCL learn representations at the instance level using the NT-Xent loss while considering more negative pairs.
 - □ NT-Xent loss consider two views of same instance as positive and view of different instances as negative.
 - ☐ GCL also include the views generated through negative data augmentation.
 - □ Consequently, instead of contrasting one positive pair and N-1 negative pairs in NT-Xent =, GCL contrasts one pair and 2N-1 negative pairs.

$$L_{GCL} = -\frac{1}{2N} \sum_{i \in B_a \cup B^+} \log \frac{\exp(sim(z_i, z_i^+)/\tau)}{\sum_{j \in B \ and \ j \neq i} \exp(sim(z_i, z_j^+)/\tau)}$$

$$sim\big(z_i,z_j\big) = \frac{z_i^T z_j}{\left\|z_j\right\| \left\|z_i\right\|}$$

$$B = \{B_a, B^+, B^-\}$$

2-3. Anomaly detection

- After training, we assume that the encoder has learn sufficient information to be efficient for our downstream task (AD).
- Anomaly can be identified using a simple anomaly score computed as follows:

$$s(w_t) = D(f_{\theta}(w_t), z_{cent})$$

$$z_{cent} = \frac{1}{N_{train}} \sum h_i$$

3. Experimental results

- Datasets:
 - ☐ Cloud Gaming QoE/QoS datasets: (STD, GFN, XC)
 - Benchmark datasets (SMD, SMAP, MSL)

- Competing solutions:
 - ☐ iForest
 - ☐ Deep-SVDD, AE, USAD
 - ☐ SimCLR, SimSiam, TS2Vec

- Evaluations metrics:
 - ☐ F1-score
 - □ AUPR
 - ☐ MCC (Matthews Coefficient Correlation)

- **Experiments:**
 - ☐ Performance comparison
 - ☐ Ablation studies
 - Data contamination
 - ☐ Hyper-parameters influence

3-1. Experimental results: Performance

TABLE II: Performance comparison on the datasets. Mean and standard deviation computed over all entities for benchmark datasets and over five runs for case-study datasets. Bold values indicate best results.

1		Models	IForest	Deep-SVDD	AE	USAD	SimCLR	SimSiam	TS2Vec	CATS
2		AUC	77.10 _(±11.9)	75.31 _(±14.5)	81.33 _(±13.2)	81.08(±12.5)	80.83 _(±14.7)	77.26 _(±14.9)	74.25 _(±16.6)	82.21 _(±14.3)
1	SMD	F1	29.88 _(±20.6)	$34.75_{(\pm 21.5)}$	$46.00_{(\pm 24.3)}$	$46.62_{(\pm 26.3)}$	46.51 _(±25.7)	41.82(±25.3)	43.18(±25.9)	$50.65(\pm 23.6)$
		MCC	29.62 _(±20.8)	36.25 _(±22.0)	47.00(±24.1)	47.98(±25.1)	48.06(±24.2)	43.24 _(±24.9)	44.95 _(±24.7)	50.85 _(±23.6)
	MSL	AUC	56.94 _(±14.1)	61.38 _(±17.1)	62.30 _(±16.1)	63.31 _(±14.3)	61.09(±15.4)	62.07 _(±14.3)	63.95 _(±15.0)	64.98 _(±15.7)
I		F1	21.24(+21.4)	$27.93_{(\pm 25.6)}$	$26.02(\pm 22.9)$	$27.16_{(\pm 23.0)}$	$25.72_{(\pm 23.1)}$	23.78 _(±23.2)	$28.43_{(\pm 24.5)}$	29.15(+24.2)
		MCC	$11.09_{(\pm 21.8)}$	19.24 _(±29.2)	16.49 _(±24.4)	$17.33_{(\pm 24.8)}$	$16.30_{(\pm 25.1)}$	14.11 _(±24.0)	19.86(±24.8)	20.14(±27.8)
1		AUC	56.98 _(±17.3)	62.52 _(±19.1)	64.30 _(±19.6)	61.11 _(±19.4)	63.99 _(±17.7)	62.12 _(±17.1)	61.42 _(±20.3)	64.07 _(±18.6)
5	SMAP	F1	$22.80_{(\pm 27.2)}$	29.20 _(±33.0)	28.93 _(±33.5)	30.10 _(±33.1)	$28.23_{(\pm 32.2)}$	$27.46_{(\pm 33.2)}$	28.26(±33.2)	$29.07_{(\pm 29.07)}$
		MCC	$11.38_{(\pm 29.0)}$	23.93 _(±33.1)	23.96 _(±34.0)	23.66(±34.9)	$22.52_{(\pm 32.2)}$	21.44 _(±32.5)	23.5 _(±32.8)	24.28 _(±32.7)
		AUC	74.57 _(±1.63)	91.19 _(±1.08)	96.04 _(±0.27)	96.09 _(±0.08)	95.78 _(±0.39)	75.65 _(±11.3)	95.63 _(±1.94)	97.93 _(±0.13)
5	STD	F1	$75.79_{(\pm 1.42)}$	$87.18_{(\pm 1.24)}$	$90.35_{(\pm 0.51)}$	$90.02_{(\pm 0.24)}$	$90.15_{(\pm 0.52)}$	74.21 _(±9.22)	92.83 _(±1.92)	94.06(±0.45)
5		MCC	$39.56_{(\pm 3.66)}$	$71.83_{(\pm 2.77)}$	$78.93_{(\pm 1.14)}$	$77.89_{(\pm 0.36)}$	$78.48_{(\pm 1.17)}$	39.31 _(±19.8)	84.33 _(±4.12)	86.72 _(±0.88)
-	GFN	AUC	61.97 _(±0.87)	71.78 _(±3.41)	74.05 _(±0.84)	74.84 _(±0.42)	78.50 _(±1.95)	67.07 _(±3.25)	74.91 _(±4.32)	84.35 _(±1.23)
(F1	$74.12_{(\pm 0.71)}$	75.51 _(±2.11)	$74.05_{(\pm 0.84)}$	$77.80_{(\pm 0.38)}$	81.20 _(±2.61)	74.25 _(±2.93)	76.76(±2.71)	82.88 _(±0.96)
•		MCC	$17.07_{(\pm 1.27)}$	24.26 _(±6.56)	28.08(±0.14)	$31.40_{(\pm 1.22)}$	37.46(±3.87)	17.86(±6.27)	28.19(±8.39)	47.27 _(±1.49)
1		AUC	78.71 _(±1.13)	67.32 _(±6.52)	89.18 _(±2.31)	89.97 _(±0.26)	85.81 _(±3.17)	83.35 _(±10.6)	96.96 _(±1.36)	96.10 _(±0.41)
2	XC	F1	$63.33(\pm 1.18)$	$50.83(\pm 7.69)$	75.94 _(±3.30)	$77.59_{(\pm 0.58)}$	$70.58_{(\pm 3.45)}$	$69.09_{(\pm 13.4)}$	89.60(+2.03)	$86.69_{(\pm 0.83)}$
		MCC	43.42 _(±2.43)	27.40(±11.4)	63.95 _(±4.63)	$65.35_{(\pm 0.72)}$	56.59(±4.89)	52.30(±21.3)	84.07(±2.94)	$79.67_{(\pm 0.11)}$

3-2. Experimental results: Ablation study

Impact of each loss components

Table 4. Ablation study on loss components.

	G	FN	XC			
Loss	F1	MCC	F1	MCC		
\mathcal{L}_{NTXent}	81.20 _(±2.61)	37.46 _(±3.87)	70.58 _(±3.45)	56.59 _(±4.89)		
\mathcal{L}_{GCL}	82.52 _(±1.77)	$40.73_{(\pm 2.32)}$	85.68 _(±2.52)	78.31 _(±3.67)		
\mathcal{L}_{TCL}	79.93 _(±2.69)	38.12 _(±8.32)	76.57 _(±5.68)	65.71 _(±8.34)		
$\mathcal{L}_{w/o-crop}$	80.44 _(±2.01)	33.45 _(±1.96)	85.68 _(±2.52)	78.31 _(±3.67)		
$\mathcal{L}_{GCL} + \mathcal{L}_{TCL}$	82.88 _(±0.96)	47.27 _(±1.49)	86.69 _(±0.83)	79.67 _{(±0.11}		

3-3. Experimental results: Data contamination

3-4. Experimental results: Hyperparameters impact

4. Conclusion

- CATS addresses the limitations of traditional CL with temporal similarity and negative data augmentation.
- Empirical evaluations demonstrate performance in AD tasks on different datasets while being robust to data contamination.
- ☐ Some limitations remain:
 - Increased training time due to the SoftDTW time complexity O(N²)
 - Triplet loss in TCL hinders the efficiency of temporal modeling due to the use of 1 negative.

Orange Innovation

Dynamic Time Warping

Dynamic Time Warping (source: https://rtavenar.github.io/blog/dtw.html)

$$DTW_q(x,x') = \min_{\pi \in \mathcal{A}(x,x')} \left(\sum_{(i,j) \in \pi} d(x_i,x_j')^q
ight)^{rac{1}{q}}$$

$$\operatorname{soft-}DTW^{\gamma}(x,x') = \min_{\pi \in \mathcal{A}(x,x')} {}^{\gamma} \sum_{(i,j) \in \pi} d(x_i,x_j')^2$$

$$\min^{\gamma}(a_1,\ldots,a_n) = -\gamma \log \sum_i e^{-a_i/\gamma}$$

Experimental results: Performance

2. Background on Contrastive Learning

☐ Contrastive Learning (CL) consist in learning representation without label information while ensuring that semantically-similar samples are closed (positives) and far from others (negatives).

Self Supervised Contrastive

2-1. Data augmentation

- ☐ The key ingredients to the success of CL are data augmentation and loss functions.
 - Data augmentation generate different views of a sample and then help learn representations by maximizing the similarity of views from the same samples and minimize those of others.

2-2. Loss functions

Some popular CL loss functions are:

☐ Triplet loss:

$$\mathcal{L}(A, P, N) = \max(\|f(A) - f(P)\|_2 - \|f(A) - f(N)\|_2 + \alpha, 0)$$

- □ N-pair loss: extension of triplet to many negative samples
- NT-Xent loss (proposed in SimCLR): extension of N-pair loss with a temperature parameter to scale cosine similarity

$$\mathcal{L}(\mathbf{z_i}, \mathbf{z_j}) = -\log \frac{\exp(\mathbf{z_i} \mathbf{z_j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{k \neq i} \exp(\mathbf{z_i} \mathbf{z_k}/\tau)}$$

Self-supervised NT-Xent loss

2-3. Contributions

- □ Negative sampling is important for CL to avoid collapse issues.
- CL losses do not handle temporal dependencies
- Contributions for time-series anomaly detection:
 - Use negative data augmentation techniques for time-series to be considered as anomalies (anomaly injection)
 - Consider temporal dependencies with a novel (Dynamic Time Warping)
 DTW-based temporal loss