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1. Context & Motivation

▪ Stringent network requirements of low-latency applications (CG) :

▪ Network issues for end-users.

▪ Need to detect user quality degradation.

▪ Machine-learning approaches (ML) efficient in anomaly detection

but supervised learning require labeled data.

▪ Impractical due to the increasing network complexity.

▪ =>  Use of unsupervised ML models.

▪ Evaluation of 5 unsupervised ML models with datasets collected

on Google Stadia CG server under 6 different 4G emulated

network conditions.
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2. Testbed

• Public Google Stadia platform with the traffic routed through the 

Internet.

• WebRTC API to provide client-side QoS/QoE metrics.

• Played on 4G network conditions emulated with the Mahimahi tool

[Mahimahi], based on real 4G conditions from the commercial 

french ISP, Orange.
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3. Datasets collected

X220

X80

X160

X40

X120

Xhighway

220 Mbps 160 Mbps

140 Mbps 120 Mbps

80 Mbps Highway

14 QoS/QoE features with a 

time-step of 5ms :

• Bitrate, RTT, client-processing

delay, frame-rate, resolution, 

freeze occurrences, frames 

dropped, video reendering

jitter

• Downlink throughput

reachable on the 4G emulated

network condition.

• 5 static scenarios

• 1 mobility scenario on 

highway
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4. Evaluation of Unsupervised ML models for 

Anomaly Detection

• 4-1. Unsupervised ML models

• 4-2. Data processing

• 4-3. Performance assessment

• 4-4. Evaluations & Results
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4-1. Unsupervised ML models

➢ One Class-SVM: Support Vector

Machines (SVM) based-approach to 

separate the normal data from

anomaly data with an hyper-sphere.

➢ Isolation Forest: Performs splits based

on features to isolate anomalies from

normal instances.

Fig : OC-SVM

Fig : Isolation Forest
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4-1. Unsupervised ML models : Reconstruction 

approaches

𝑎𝑛𝑜𝑚𝑎𝑙𝑦𝑠𝑐𝑜𝑟𝑒 = (𝑋𝑖𝑛𝑝𝑢𝑡 − 𝑋𝑟𝑒𝑐𝑜𝑛𝑠𝑡)
2
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4-1. Unsupervised ML models : Reconstruction 

approaches

➢ PCA: Reconstruction of the data with

principal components.

➢ Auto-Encoder (AE): Constitued of an 

encoder, that learns from inputs a 

low-dimensional representation of 

data, and a decoder that reconstruct

original data from latent variable.

➢ LSTM-VAE: Combination of LSTM 

and a VAE (AE with bayesian

inference).
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4-2. Data processing

50% of normalTrain

Test

Contamination 

set

➢Train/Test datasets splitting.

➢Contamination set to assess the robustness of unsupervised

ML models to data contamination.

➢Real-life datasets not free of anomalies.
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4-3. Performance assessment

After training, how can we

know if the model correctly

predicted ?

Ground truths required to 

objectively assess the 

performance. 

Ground truths

created for the 

performance 

assessment

Observation 

defined as 

anomalies if 

satisfies one of the 

following criteria

• Frame rate < 60 FPS

• Resolution < 1080p

• Freeze occurence
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4-4. Evaluations & Results

Performance evaluation metrics :

➢ Precision:  𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃

➢ Recall:      𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁

➢ F1-Score: 𝐹1 = 2
𝑃 . 𝑅

𝑃+𝑅

➢ Best models without data 

contamination: AE and LSTM-VAE. 

➢ OC-SVM or iForest more robust to data 

contamination.
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Source: 
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4-4. Evaluations & Results

The training/test time for 

OC-SVM very high 

compared to iForest for the 

same performance with data 

contamination.
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5. Conclusion

➢ High impact of data contamination on unsupervised ML models.

➢ AE and LSTM-VAE better without data contamination.

➢ OC-SVM and iForest more robust to data contamination but OC-SVM 

has a longer training/test time.

➢ Some current limitations:

➢ Reconstruction-based approach evaluated with the 3-sigma rule for 

threshold selection.

➢ Point-wise anomaly detection not well-suited for the detection of CG 

quality degradation.

➢ Future work:

➢ Additional evaluations with state-of-the-art approaches

➢ Use sequences of observations instead of point observations to better

model an anomaly for cloud-gaming sessions.

➢ Study the impact of the threshold for the performance of reconstruction-

based models.
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Questions
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A-1. Characterization of 4G txops measured

File 4 File 5 File 6 16



A-2. Max downlink throughput on the txops files 

File 4 File 5 File 6 17

File 1 File 2 File 3



B. Generation of realistic cellular network conditions

2-1. Motivation :

• How can we conduct controlled experiments on realistic network conditions ?

• The framework Mahimahi developed by MIT researchers.

• Transmission opportunities (txops) files, used by Mahimahi to emulate time-varying capacity network, 

are old and not representative of current cellular network capacities (Verizon LTE - TMobile 2016).

• Current downlink throughput according to [ARCEP] are about 71Mbps while those on the txops

are about 5-10Mbps.

• We want more recent txops file to perform better evaluations.

• How to generate txops files that can emulate current and realistic cellular network conditions ?

• Use Saturatr tool to make measurements from 4G/5G base station.
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B-2. Protocol for experiments on time-varying

capacity networks

Saturator tool [Saturatr] to generate transmission 

opportunities (txops) by saturating link radio. 

Txops Generation

Nb packets per txops = 6

Inter Txops Time = 75 – 48 = 27 

ms

𝑖𝑓 𝑟𝑡𝑡 < 𝑅𝑇𝑇𝑙𝑜𝑤𝑒𝑟 && 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑤𝑖𝑛𝑑𝑜𝑤 < 𝑤𝑖𝑛𝑑𝑜𝑤𝑢𝑝𝑝𝑒𝑟 𝑡ℎ𝑒𝑛 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑤𝑖𝑛𝑑𝑜𝑤 + +

𝑖𝑓 𝑟𝑡𝑡 > 𝑅𝑇𝑇𝑢𝑝𝑝𝑒𝑟 && 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑤𝑖𝑛𝑑𝑜𝑤 > 𝑤𝑖𝑛𝑑𝑜𝑤𝑙𝑜𝑤𝑒𝑟 𝑡ℎ𝑒𝑛 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑤𝑖𝑛𝑑𝑜𝑤 −= 20



B-3. Characteristics of the measured cellular 

networks condition

Conditions Throughput 

(Mbps)

Location

File 1 220 Orange

File 2 160 Orange

File 3 120 Brélévenez

File 4 80 Brélévenez

File 5 40 Plemeur-

Bodou

File 6 

(Highway)

45 Guingamp -

Lannion

File 1

File 6

Measurements conditions



B-4. Testbed



C. Evaluations & Results

The comparison between F1-score and AUC show how 

misleading the AUC score can be when the test set is

imbalanced.



D. Datasets
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E. Evaluations & Results
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4-1. Unsupervised ML models : Reconstruction 

approaches

➢ PCA: Reconstruction of the data 

with principal components.

➢ Auto-Encoder (AE): Constitued of 

an encoder, that learns from

inputs a low-dimensional

representation of data, and a 

decoder that reconstruct original 

data from latent variable.

➢ LSTM-VAE: Combination of 

LSTM and a VAE (AE with

bayesian inference).

𝑎𝑛𝑜𝑚𝑎𝑙𝑦_𝑠𝑐𝑜𝑟𝑒 = (𝑋𝑡𝑟𝑢𝑒 − 𝑋𝑟𝑒𝑐𝑜𝑛𝑠)
2
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4-2. Data processing

• Mixed-dataset splitting

X220

X80

X160

X40

X120

Xhighway

Train

Test

Contamination 

set

50% of normal

• High-bitrate splitting:

X220

X80

X160

X40

X120

Xhighway

Train

Test

Normal obs. for train

Abnormal for contamination

Train

Test

Contamination set

Contamination set

➢ Assessing the robustness of unsupervised ML models to data

contamination
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50% of normal +

60% of abnormal

40% of abnormal

observations


