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Context and problem statement

▪ Global end-to-end services can be offered to end-users by 

chaining several micro-services, eventually developed by 

different providers

▪ Network programmability has become increasingly 

important in network architectures, first with NFV (Network 

Function Virtualization) and later with P4 (Programming 

Protocol-independent Packet Processors)

▪ However, NFV micro-services can only chained with other 

NFV micro-services and currently no chaining for P4 

modules

=> Need for a multi-level and multi-technology 

chaining of micro-services

2



3

P4 : Brief concepts
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▪ Open-source consortium (p4.org)

▪ Data plane programmability : deploy software into P4-based 

equipment (e.g., switch)

▪ Parsing of packet information

▪ Packet processing based on match-action tables, remotely 

configurable by interfaces (controllers)

▪ P4 hardware chipset (e.g. Intel/Tofino, AMD/Pensando)

From https://events19.linuxfoundation.org/wp-content/uploads/2017/12

Tutorial-P4-and-P4Runtime-Technical-Introduction-and-Use-Cases-for-Service-Providers-Carmelo-Cascone-Open-Networking-Foundation.pdf



NFV : Brief concepts

▪ Defined at ETSI

▪ Services, aka VNF (Virtual Network Functions), hosted on 

standard virtualized infrastructure, in order to ease their 

lifecyle (install, configure, remove, etc.)

▪ Remove the necessity of dedicated hardware, provided by 

vendors

▪ Operators only buy the micro-services to the vendors

4
From https://www.researchgate.net/figure/MANO-architecture-overview_fig2_342571996



Why a 2-levels programmability ?

▪ NFV is available for offering network services (VNFs):

• Mostly for control plane functions

• Running in standard machines

• Services can be complex, with difficult processing tasks, as 

developed in common programming language.

o But not suited for line-rate function, requiring very low latency

▪ P4 is emerging as a data plane programmable solution :

• Processing packet per packet as defined by the P4 module, 

ensuring line-rate processing

• Running in network hardware (e.g., switch)

o But P4 services can not be complex and include tricky processing 

tasks
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Why a 2-levels programmability ?

▪ NFV and P4 exhibits their own advantages and limitations 

related to their environment :

• execution time, resource consumption, computational task, protocol 

stack layer, configuration, migration, etc. 

▪ Depending on the complexity and requirements of the 

micro-service, developers should consider to develop it 

either as a VNF or a P4 module

=> The global end-to-end service could benefit of the 

best of the two levels if chaining micro-services at the 2 levels 

(NFV and P4) would be feasible
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SR-MPLS Concept

▪ Segment Routing leverages the source routing paradigm, where 

a packet carries the path to reach its destination in its header

▪ SR-MPLS is mostly used in networks to route packets between 

nodes (i.e. IP routers).

▪ Segment Identifier (SID) identifies a node, a link or a service that 

is reachable in the network. For SR-MPLS, SID are represented 

by a MPLS label

7From https://support.huawei.com/enterprise/en/doc/EDOC110027856/3ee10304/understanding-segment-routing-mpls



SR for chaining P4 & NFV services

▪ Proposal to use SR-MPLS to chain micro-services :

▪ Define a SID for each micro-service, being a P4 module or 

a VNF.

▪ Stack the SR-MPLS labels as the order to execute the 

micro-services to compose the global service

▪ Route the MLPS packet according to the MPLS label to 

reach to next micro-service to be executed for the given 

packet, either to the next P4 node or to the NFV node 

hosting the VNF
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SR in P4-based network switch

▪ MPLS being a network protocol, the P4 switch can easily 

manage it.
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SR Proxy for VNFs

▪ But VNFs, running in computing machines, do not include 

MPLS in their protocol stack

▪ One option could be to integrate MPLS into the protocol 

stack but our objective being to provide an architecture 

requiring no modification of the current VNFs for a 

seamless integration, we 

=> Define a proxy, intermediate between network 

MPLS-enabled nodes and VNFs to chain the micro-services
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SR Proxy for VNFs

▪ The proxy has the following algorithm
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Implementation & Demonstrator

▪ Global service : Identify cloud gaming sessions and priorize 

them when detected for ensuring low-latency requirements

▪ 2 P4 modules :

• 1 for session features computation (packet size, direction, inter-

arrival time, etc.)

• 1 for for traffic priorisation

▪  3 VNFs 

• 1 module for receiving session data from the 1st P4 module and 

format them as needed

• 1 or more modules for processing the data, with a AI module

• 1 module for aggregating for the results and make a decision

▪ The SR-Proxy between the P4 nodes and VNFs

▪ A global controler to configure the routing tables based on 

the order of micro-services chaining 12



Implementation & Demonstrator

▪ For the P4 modules :

• Running in a Edgecore DCS 800 Wedge 100BF-32X switch, having 

32 QSFP28 ports supporting each 100 GbE, with a P4 Intel/Tofino 

chipset

• Modules developed with the TNA (Tofino Native Architecture) SDE 

(Software Development Environment) v9.9.1 

▪ For the VNF micro-services

• Software running in common linux-based computing machines, 

developed in Python 3.7, with pandas, pytorch, scikit-learn, etc.

▪ For the SR-Proxy 

• Software running in common linux-based computing machines, 

developed in Python 3.8, with scapy, Hashlib and JSON

▪ For the controller

• Software running in common linux-based computing machines, 

developed in Python 3.8
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Implementation & Demonstrator
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Implementation & Demonstratorr
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Conclusion & Evolution

▪ Proposal to connect the two levels of programmability (NFV 

& P4) , based on SR-MPLS, to allow the execution of a 

global service chaining micro-services operated at both 

levels, to benefit of the best of each

▪ Definition of a MPLS proxy, intermediate between P4 

nodes and VNFs, to keep VNF softwares unchanged

▪ Demonstrator implemented on a hardware P4 switch and 

VNFs running in software, for the use-case of a cloud 

gaming traffic detection

▪ The controller is currently a Python program, but it might be 

integrated with an orchestrator such as ONOS or MANO.

▪ Another option is to benefit from SR automatic 

announcement to populate the MPLS routing tables
16
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