
Segment Routing for Chaining

Micro-Services at Different

Programmable Network Levels

Bertrand Mathieu, Olivier Dugeon, Joël Roman Ky
Orange Innovation

Philippe Graff, Thibault Cholez
Université de Lorraine, Inria

14/03/2024

Context and problem statement

▪ Global end-to-end services can be offered to end-users by

chaining several micro-services, eventually developed by

different providers

▪ Network programmability has become increasingly

important in network architectures, first with NFV (Network

Function Virtualization) and later with P4 (Programming

Protocol-independent Packet Processors)

▪ However, NFV micro-services can only chained with other

NFV micro-services and currently no chaining for P4

modules

=> Need for a multi-level and multi-technology

chaining of micro-services

2

3

P4 : Brief concepts

3

▪ Open-source consortium (p4.org)

▪ Data plane programmability : deploy software into P4-based

equipment (e.g., switch)

▪ Parsing of packet information

▪ Packet processing based on match-action tables, remotely

configurable by interfaces (controllers)

▪ P4 hardware chipset (e.g. Intel/Tofino, AMD/Pensando)

From https://events19.linuxfoundation.org/wp-content/uploads/2017/12

Tutorial-P4-and-P4Runtime-Technical-Introduction-and-Use-Cases-for-Service-Providers-Carmelo-Cascone-Open-Networking-Foundation.pdf

NFV : Brief concepts

▪ Defined at ETSI

▪ Services, aka VNF (Virtual Network Functions), hosted on

standard virtualized infrastructure, in order to ease their

lifecyle (install, configure, remove, etc.)

▪ Remove the necessity of dedicated hardware, provided by

vendors

▪ Operators only buy the micro-services to the vendors

4
From https://www.researchgate.net/figure/MANO-architecture-overview_fig2_342571996

Why a 2-levels programmability ?

▪ NFV is available for offering network services (VNFs):

• Mostly for control plane functions

• Running in standard machines

• Services can be complex, with difficult processing tasks, as

developed in common programming language.

o But not suited for line-rate function, requiring very low latency

▪ P4 is emerging as a data plane programmable solution :

• Processing packet per packet as defined by the P4 module,

ensuring line-rate processing

• Running in network hardware (e.g., switch)

o But P4 services can not be complex and include tricky processing

tasks

5

Why a 2-levels programmability ?

▪ NFV and P4 exhibits their own advantages and limitations

related to their environment :

• execution time, resource consumption, computational task, protocol

stack layer, configuration, migration, etc.

▪ Depending on the complexity and requirements of the

micro-service, developers should consider to develop it

either as a VNF or a P4 module

=> The global end-to-end service could benefit of the

best of the two levels if chaining micro-services at the 2 levels

(NFV and P4) would be feasible

6

SR-MPLS Concept

▪ Segment Routing leverages the source routing paradigm, where

a packet carries the path to reach its destination in its header

▪ SR-MPLS is mostly used in networks to route packets between

nodes (i.e. IP routers).

▪ Segment Identifier (SID) identifies a node, a link or a service that

is reachable in the network. For SR-MPLS, SID are represented

by a MPLS label

7From https://support.huawei.com/enterprise/en/doc/EDOC110027856/3ee10304/understanding-segment-routing-mpls

SR for chaining P4 & NFV services

▪ Proposal to use SR-MPLS to chain micro-services :

▪ Define a SID for each micro-service, being a P4 module or

a VNF.

▪ Stack the SR-MPLS labels as the order to execute the

micro-services to compose the global service

▪ Route the MLPS packet according to the MPLS label to

reach to next micro-service to be executed for the given

packet, either to the next P4 node or to the NFV node

hosting the VNF

8

SR in P4-based network switch

▪ MPLS being a network protocol, the P4 switch can easily

manage it.

9

parses

the

MPLS

protocol

P4 module

Ingress

processing if

1st MPLS

label

corresponds
Same for the

Egress

pipeline

deparses

the MPLS

protocol

(remove

1st label if

local

module)

forwards to

the next node

(routing table

configured via

one controller)

SR Proxy for VNFs

▪ But VNFs, running in computing machines, do not include

MPLS in their protocol stack

▪ One option could be to integrate MPLS into the protocol

stack but our objective being to provide an architecture

requiring no modification of the current VNFs for a

seamless integration, we

=> Define a proxy, intermediate between network

MPLS-enabled nodes and VNFs to chain the micro-services

10

VNF1 VNF2

P4-1

VNF3

SR Proxy SR Proxy

Orchestrator

P4-2

SR Proxy for VNFs

▪ The proxy has the following algorithm

11

Incoming packet

from P4 switch

Packet

processing

Extract and save

session identifiers

and remaining

MPLS stack
Build packet to

send to VNF

Extract

headers &

payload

Send packet to
VNF for this
MPLS label

Save hash
computed based

on session
identifiers

Incoming packet

from VNFs

Extract
session

identifiers
Hash

computation

based on

identifiers

First

MPLS

label for

proxy ?

Yes

Forward/

Drop

No

Extract data

payload

Rebuild

packet with

MPLS stack

1st MPLS

label

associated

with local

VNF

Yes

Yes

Drop

No

Forward packet

to next node

No

Is computed
hash in stored

hashs ?

Outgoing

packet to

VNF

Implementation & Demonstrator

▪ Global service : Identify cloud gaming sessions and priorize

them when detected for ensuring low-latency requirements

▪ 2 P4 modules :

• 1 for session features computation (packet size, direction, inter-

arrival time, etc.)

• 1 for for traffic priorisation

▪ 3 VNFs

• 1 module for receiving session data from the 1st P4 module and

format them as needed

• 1 or more modules for processing the data, with a AI module

• 1 module for aggregating for the results and make a decision

▪ The SR-Proxy between the P4 nodes and VNFs

▪ A global controler to configure the routing tables based on

the order of micro-services chaining 12

Implementation & Demonstrator

▪ For the P4 modules :

• Running in a Edgecore DCS 800 Wedge 100BF-32X switch, having

32 QSFP28 ports supporting each 100 GbE, with a P4 Intel/Tofino

chipset

• Modules developed with the TNA (Tofino Native Architecture) SDE

(Software Development Environment) v9.9.1

▪ For the VNF micro-services

• Software running in common linux-based computing machines,

developed in Python 3.7, with pandas, pytorch, scikit-learn, etc.

▪ For the SR-Proxy

• Software running in common linux-based computing machines,

developed in Python 3.8, with scapy, Hashlib and JSON

▪ For the controller

• Software running in common linux-based computing machines,

developed in Python 3.8
13

Implementation & Demonstrator

14

CG
Receiver

CG
Node

P4-1

CG
Aggregator

SR Proxy

Controler

P4-2

CG
Feature

Extractor

CG
Flows

Priorisation

MPLS
Label

P4 ID
IP@ / Port

131 192.168.1.10 / 3333

130 P4_ID1

132 192.168.1.11 / 4444

133 192.168.2.10 / 5555

134 P4_ID2

131
130

132
133
134

131
132
133
134

133
134

133
134

133
134

134

132
133
134

SR Proxy

Data

Data

Data

Data

Data
Data

Data

CG ClientCG Server

Data

DataData

Session IP1/IP2/Pa/Pd is CG

Priorize
 IP1/IP2/Pa/Pd

Implementation & Demonstratorr

15

▪ Example of P4

traces for the

SR-MPLS

processing

▪ Example of

sessions decision

for 2 sessions

Conclusion & Evolution

▪ Proposal to connect the two levels of programmability (NFV

& P4) , based on SR-MPLS, to allow the execution of a

global service chaining micro-services operated at both

levels, to benefit of the best of each

▪ Definition of a MPLS proxy, intermediate between P4

nodes and VNFs, to keep VNF softwares unchanged

▪ Demonstrator implemented on a hardware P4 switch and

VNFs running in software, for the use-case of a cloud

gaming traffic detection

▪ The controller is currently a Python program, but it might be

integrated with an orchestrator such as ONOS or MANO.

▪ Another option is to benefit from SR automatic

announcement to populate the MPLS routing tables
16

Thanks

&

Questions

17

	Diapositive 1 Segment Routing for Chaining Micro-Services at Different Programmable Network Levels
	Diapositive 2 Context and problem statement
	Diapositive 3 P4 : Brief concepts
	Diapositive 4 NFV : Brief concepts
	Diapositive 5 Why a 2-levels programmability ?
	Diapositive 6 Why a 2-levels programmability ?
	Diapositive 7 SR-MPLS Concept
	Diapositive 8 SR for chaining P4 & NFV services
	Diapositive 9 SR in P4-based network switch
	Diapositive 10 SR Proxy for VNFs
	Diapositive 11 SR Proxy for VNFs
	Diapositive 12 Implementation & Demonstrator
	Diapositive 13 Implementation & Demonstrator
	Diapositive 14 Implementation & Demonstrator
	Diapositive 15 Implementation & Demonstratorr
	Diapositive 16 Conclusion & Evolution
	Diapositive 17

