

A Hybrid P4/NFV Architecture for Cloud Gaming Traffic Detection with Unsupervised ML

<u>Joël Roman Ky</u>, Bertrand Mathieu – *Orange Innovation Lannion* Philippe Graff, Thibault Cholez – *Université de Lorraine, CNRS, Inria, LORIA*

IEEE ISCC 2023

Tunis, 11/07/2023

Table of contents

- 1. Context & Motivation
- 2. Previous works
- 3. ML-based CG traffic detection
- 4. Hybrid P4/NFV Architecture
- 5. Evaluation
- 6. P4 Limitations
- 7. Conclusion

1. Context & Motivation

- Increasing pressure of Cloud Gaming (CG) traffic on current network infrastructures.
- Stringent network requirements, especially in terms of jitter and latency.

Recent network technologies such as L4S (Low Latency Low Loss Scalable throughput) can reduce the latency of low-latency (LL) traffic.

2. Previous works

- Cloud Gaming traffic from 4 main CG platforms available in Europe (Stadia (STD), GeForceNow (GFN), Xbox Cloud (XC) and PlayStationNow (PSN)):
 - Traffic on normal conditions
 - Traffic with network constraints
- Non-Cloud Gaming Traffic: (Video conferencing (VC); Video streaming (VS); Live video streaming (LV); Facebook navigation (FN))
- New datasets: (new games and new CG platforms (Moonlight, Steam)

- Decision Tree (DT) model (supervised ML) in a set of VNF to detect CG traffic [Graff et al.].
 - Performance degradations with new CG traffic (« unseen » CG traffic or new CG platforms).

- > Mean packet size
- Average Inter Arrival Times (IAT)
- Total number of packets
- Standard deviation of packet size
- Standard deviation of IATs
- Total size of application data

12 network traffic features (computed for uplink and downlink traffic) for a window traffic of 33ms

3. ML-based CG Traffic Detection

ML models:

- DT (Decision Tree): CG traffic on normal conditions and NCG traffic (with labels)
- USAD (UnSupervised Anomaly Detection): CG traffic on normal conditions only (without labels) [Audibert et al.]:

ML models Performance:

IEEE ISCC 2023 Datasets

4. Hybrid P4/NFV Architecture

1 hardware P4 switch, 1 NFV compute node

5. Evaluation

Accuracy & F1-score for all traffic

Traffic	Туре	Performance with P4		Performance with application		Difference (%)	
		Accuracy	F1	Accuracy	F1	Accuracy	F1
Normal CG	STD	0.965	0.983	0.984	0.992	-1.90	-0.97
	GFN	0.990	0.995	0.979	0.989	1.16	0.58
	XC	0.903	0.942	0.966	0.981	-6.35	-3.85
	PSN	0.981	0.990	0.966	0.983	1.46	0.76
	Overall	0.958 (±0.054)	0.979 (±0.03)	0.973 (±0.021)	0.986 (±0.011)	-1.44	-0.74
CG with network constraints	STD	0.999	0.999	1.000	1.000	-0.01	-0.01
	XC	0.954	0.977	0.992	0.996	3.33	1.55
	PSN	0.995	0.998	0.961	0.983	-3.73	-1.91
	Overall	0.983 (±0.035)	0.993 (±0.019)	0.984 (±0.019)	0.992 (±0.010)	-0.14	0.05
Non CG	VC	0.938	0.971	0.867	0.941	7.18	3.00
	LV	0.980	0.990	0.978	0.989	0.17	0.10
	VS	0.993	0.996	0.991	0.996	0.14	0.01
	FB	0.988	0.994	0.989	0.995	-0.10	-0.04
	Overall	0.959 (±0.056)	0.983 (±0.031)	0.918 (±0.114)	0.970 (±0.066)	4.13	1.30
New games CG learned platforms	GFN	0.973	0.986	0.995	0.997	-2.15	-1.10
	XC	0.969	0.984	0.979	0.989	-0.97	-0.50
	PSN	0.980	0.990	0.999	1.000	-1.97	-1.00
	Overall	$0.974~(\pm 0.010)$	0.987 (±0.005)	0.991 (±0.011)	0.996 (±0.006)	-1.70	-0.84
New CG platforms	MoonLight	0.999	0.999	1.00	1.00	-0.01	-0.01
	Steam	0.999	0.999	1.00	1.00	-0.01	-0.01
	Overall	0.999 (±0.00)	0.999 (±0.00)	1.00 (±0.00)	1.00 (±0.00)	-0.01	-0.01

6. P4 Limitations

- Limited computation capabilities due to:
 - Limited number of operations
 - Variable multiplication/division limited => Standard deviation can not be computed
- Not a packet buffering/copying capability in P4
 - => Impossible to keep in memory packet features value to compute standard deviation
- Processing trigger upon packet arrival
 - => Reports are not sent exactly each 33ms because there is no timer
 - If sporadic traffic, empty reports need to be send to acknowledge the lack of traffic

6. P4 Limitations

 Standard deviation approximation with previous mean value.

Remove standard deviation from ML features

7. Conclusion

- CG traffic detection implementation on P4 hardware module demonstrates excellent performance.
- Lessons learned from P4 hardware implementation:
 - P4 not suitable for handling complex computational tasks.
 - Time event-based programs are not ideal for P4.
 - Code optimization is required with P4
- Trade-off between high-speed line-rate packet processing and ease of programming.
- Hybrid P4/NFV architecture is a promising approach to efficiently split processing tasks.
- Evaluation of the solution with operational traffic from network operators will be considered in future work.

Thank you

joelroman.ky@orange.com

https://www.mosaico-project.org/

https://github.com/mosaico-anr/P4_NFV_CG_Detector

8. References

- [Graff et al.]: Philippe Graff, Xavier Marchal, Thibault Cholez, Bertrand Mathieu, Olivier Festor. Efficient Identification of Cloud Gaming Traffic at the Edge. NOMS 2023 36th IEEE/IFIP Network Operations and Management Symposium, May 2023, Miami, United States. pp.10.
- [Audibert et al.]: Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A. Zuluaga. 2020. USAD: UnSupervised Anomaly Detection on Multivariate Time Series. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD '20). Association for Computing Machinery, New York, NY, USA, 3395–3404.

Appendix

A-1. ML Models

Decision Tree (DT):

UnSupervised Anomaly Detection

(USAD) [Audibert et al.]:

