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1. Context & Motivation



1. Motivation
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Motivation

LL applications suffer in real-world time varying
capacity networks :
o Wi-Fi: higher RTT and jitter may occurs due
to attenuation.
o Cellular networks: delay spikes due to signal
drops or handovers.

We need smart detection and diagnostic
solutions to improve QoE for LL applications.
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Figure 1: An example result from our performance character-
ization, showing the effect of wireless access point proximity
on VR performance.
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2. Problem Statement &
Objectives



2. Problem Statement & Objectives

Goal of this thesis: Propose efficient and robust methods to detect and diagnose
the causes of performance degradation in LL applications based on KPIs collected.

Improve QoE on LL applications for individual and
enterprises clients.

Improve or design networks infrastructures (5G
and WiFi) to support LL applications requirements
(latency and jitter especially).
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3. Background



e No existing datasets capture LL applications behavior under

e Network issues faced by LL applications that prone to QoE
degradation:
o (congestion, coverage, interference, handovers, ...)
o (interference, congestion, signal attenuation, hidden
terminals, ...)
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3-2. Background: Anomaly Detection

An anomaly is an observation that deviates considerably from some concept of
normality [Chandola et al.].

Expert-defined rule-based techniques are fast but no longer scale.

Use of ML/DL solutions to circumvent these limitations.
o Given a multivariate time-series dataset X = {zy, zs,...,z7} with z; € R™
we train fs that for each new observation outputs an anomaly score s(Z;)

- 1, ifs(@;) >46
Yt = {0, otherwise.
o Performance metrics:
P=7P37F Rty
;P VOO — TP. TN — FP.FN

= TP+ FN V(TP + FP)(TP + FN)(TN + FP)(TN + FN)
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3-2. Background: Anomaly Detection

Two time series AD approaches:
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e Supervised AD: learns from labeled EO0O000E

anomalies.
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3-2. Background: Anomaly Detection
Classical unsupervised ML methods:
v e Lightweight and efficient for small datasets.

¥ e Struggle with high-dimensional data or complex
datasets.

e Methods:
o PCA [Paffenroth et al.|, Isolation Forest [Liu et al.]
OC-SVM [Scholkopf et al.|
o Distance-based: LOF [Breunig et al.], DBSCAN
[Ester et al.]
o Statistical models: ARIMA [Yaacob et al., Cao et al |
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3-2. Background: Anomaly Detection
Unsupervised Deep Learning (DL) for AD:

~ o Handle high-dimensional data with neural networks.

% ® Require computational resources and lacks interpretability.
e Vulnerable to data contamination.

e Methods
o Autoencoder-based: USAD [Audibert et al.], LSTM-VAE [Park et al |
o One-class: Deep-SVDD [Ruff et al.]
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Detecting an anomaly do not give the reason why it happened
e Root Cause Diagnosis (RCD)

Traditional (expert-based) approaches:
e Relyon

% e Struggle with
e Require
e May interfere with the causes (e.g., active probe-based)

e Many techniques:
o Cellular:
o Wi-Fi:
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3-3. Background: Root Cause Diagnosis

ML-based techniques
v e Automatically learn from data

X e Mostly supervised => require labeled data
e (Generalizability problem
e May require computational resources

e Many techniques:

o Cellular: Neural networks to detect faults from KPI data. [Shi et al.,
2022; Hasan et al., 2024]

o Wi-Fi: ML models for impairments detection [Salinas et al., 2018;
Syrigos et al., 2019; Salik et al. 2023 ]
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e Data Collection
o How to collect KPI datasets for LL applications under realistic network
conditions ?

e Anomaly Detection
o Unsupervised AD models performance model-dependent.
o Training data often
o Industrial deployments needs:
Can we propose an AD model that outperforms existing solutions and
remain efficient under data contamination ?

e Root Cause Diagnosis
o Rule-based methods no longer scale.
o ML-based RCD relies heavily on labeled anomalies.
o Can we design a RCD method efficient with :

well-suited for real-world deployments ?
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4. Key Contributions



A. Realistic for Cloud Gaming (CG) and Cloud VR under
cellular/WiFi networks

B. CATS: Contrastive learning for on Time Series

C. RAID: Anomaly Identification and Detection
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A. Data collection



https://cloud-gaming-traces.lhs.inria.fr/data.html

A-1. 4G network conditions on Orange commercial network

« Use Mahimahi framework to conduct controlled experiments on
time-varying network conditions.

» Collect recent transmission opportunities (txops) files representing current
4G network capacities.

o Use Saturatr tool to record 4G/5G base station behavior.

Conditions Throughput Location
(Mbps)

Internet

File 2 160 Orange
File 3 120 Brélévenez
File 4 80 Brélévenez
File 5 _ Plemeur-Bodou
Knomingt anknsted File 6 45 Guingamp -
(Highway) Lannion
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http://mahimahi.mit.edu/

A-2. Cloud Gaming KPIs collection on 4G networks

» Leveraging the previous txops files and commercial CG platforms to collect
QoS/QokE KPls via WebRTC API.

o Use Mahimahi-LinkShell and DECAF tool.

Frame rate,
client delay,
network RTTs
bitrate... from
Chrome
WebRTC
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https://github.com/decafCG/decaf

A-3. Data collection of Cloud VR data over Wi-Fi networks

e (G datasets collected make it challenging to isolate the root causes
e Cloud VR applications are more valuable for ISP like Orange
e Use CloudXR + Oculus tool + Livebox 6
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B. CATS: Contrastive learning for
Anomaly detection in Time Series



https://github.com/joelromanky/cats

B-1. CATS: Motivation

e Existing unsupervised AD models may suffer to discriminate anomalies
close to normal samples while being impacted by data contamination.

MCC score of the models depending on window-based approaches and data contamination c
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B-1. CATS: Motivation

25/40

Contrastive learning (CL) gained
popularity in many domains and is now
applied to time series AD.

Positive
sample

Positive
sample

input
sample

Data
Augmentation

- -

Negative

sample Representation

Space

Existing CL-based AD methods can be
improved:
o Do not exploit the temporal aspect of Figure 1.5: Contrastive learning
multivariate time series
o Not robust to data contamination.



B-2. CATS: How it works ?

\dea: Leverage CL with temporal

[ J
similarity awareness for AD on
time series.
e Core techniques: A
o Generate synthetic "
anomalies to introduce the
knowledge of anomalies.
o Usea DITW-based similarity
to enforce temporal similarity
(TCL)
o Improve GCL with synthetic
anomalies.
[y
26/40 TCL: Temporal Contrastive Learning b

GCL: Global Contrastive Learning
DTW: Dynamic Time Warping
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B-3. Experiment Results: Performance
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Validated on real-world CG KPIs data previously presented (cf A-2)

Table 4.2: Performance comparison on the datasets. Mean and standard deviation computed
over all entities for benchmark datasets and over five runs for case-study datasets. Bold values
indicate best results and underlined values the second best results.

|Models| IForest Deep-SVDD AE USAD  SimCLR SimSiam  TS2Vec |
AUPR |75.16(41.25) 95.24(40350) 97.57(40.16) 97.55(40.04) 97.46(50.21) 7979 +5.14) 97.65..40.90)
sTD | AUC |7457 (4163 91194108y 96.04(2027) 96.0910.08) 95.78(20.39) 75.65(411.3) 95.63(21.94) [ &
F1 75794 1.42) 87.18(4124) 903500051 90.02(40.21) 90.15(00.52) 7421 (49.22) 92834 g2) | K !
MCC |39.56(+3.06) 71834277y 78.93(21.14) 77.89%40.36) 78482117 39314195 84334419 |86:72(50
AUPR 76~97('_§_0.">ﬁi 87-81l;l..'|1) 88‘60(;\).1(]; SS-GS(LO.III 90~19‘ 20.65) 8'1’-49(-_6'.3.33! 89~63(:l.99) ' :
GFN AUC 6197 4087 71.78(4i3.41) 74.05(i054) 74.84(40.42) 78.50 4195 67.07 4405 7491y 30 [
F1 74-12&0,71‘. 75.5 (40211 74055084y 77.80(40.38) 81.20 4061y 74.25(42.923) 76-76(:2.'.'13 04
MCC (17.07 4127y 24.26;46.56) 28.08;40.14) 314004122 3746 43.57) 17.86(46.07) 28.19(45 39) ‘
AUPR 67.19(11_4;1, 61.99.‘_,_7_(,“ 84.21(;3_24‘. 83-34(10.3“ 80-551;‘.‘.9."“ 76.44(1“5‘“ 95_01!11'15. -- -
XC AUC 78-711_L1-l-'l' 67.32(:(,.;,-_», 89.181;3.3“ 89.97,‘10_;n;| SS-SL;.}.I‘N 8,3'35(110'(" 9696{_-_1.361 _._'
F1 |6333,.,.15) 508341769y 75.94(i3.30) 77.5940.58) 705843 45, 69.09 4134, 89.60 .2 o3| 86.69
MCC |4342(,545) 274004114y 63954463y 65.3550.72) 56.59 5450 52301421 3) 84.07 4 ga) [ 19

CATS on average outperforms AD models thanks to temporal similarity and anomaly class
knowledge.



B-3. Experiment Results: Ablation study

Table 4.3: Ablation study on loss components.

GFN XC
Loss F1 MCC F1 MCC
Larxent 8120, ;5 a1 3746 347 70.58(, .45 56.59 4 59)
Locr 825211 4073 2.0 85.68(. 51 78311567
Lrer 7993 11 69) 38.12 : 5 33 76.57 +5.63) 65.71 4544

SAPE

86.69 .o

g 1 wey
- e ¢ 11
i iz0. [

e Combination of GCL and TCL enhance the performance of CATS.
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B-3. Experiment Results: Data contamination robustness

85

e Even with contaminated training sets, 80
CATS outperforms other models.

Score (%)
~
w

o Robustpesg, Iimited.wh.en B
contamination rate is high.

Score (%)

0.0 4.0 8.0 12.0 20.0
c (%)
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C. RAID: Root cause Anomaly
Identification

30/40 —



https://github.com/joelromanky/raid

C-1. RAID: Motivation & Strategy

e ML models for RCD need labeled datasets.
e Contrastive learning improve multivariate time series classification.
e RAID: atwo-stage RCD pipeline combining self-supervised and supervised steps:

o Anomaly detection based on CATS
o Cause classification using a shallow classifier (SVM).

Anomaly Detector

Anomaly
detected

Anomaly

| ——
Score §

Cause Classifier

ﬁz o o — |’§ /

Livebox
Livebox KPIs w;

- - Cloud VR Root
31/40 causes classified



C-2. Experimental Results: Performance
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Using Wi-Fi datasets (cf
A-3) RAID is evaluated

against:

o One-stage models
(including
self-supervised
models)

o Two-stage models.

RAID achieves the highest
performance compared to
other approaches.

Table 2. Performance comparison on the datasets. Mean and standard deviation com-
puted over five runs for Cloud VR datasets. Bold values indicate best results and

underlined values the second best.

ModelslMetrics

‘ Accuracy N-Accuracy Precison

Recall

F1l-score

One-stage

|I-NN-DTW)| 51.54(+0.11)

26.36(+0.17)

56.74(+0.09)

51.54(z0.11)

52.96(+0.10)

IT-Loss
|TS2Vec
ITS-TCC

‘ 70.12(+5.29)
| 73.78(26.38)

75.22(15.58) 83.98(L4.74) 79.47(14.39)

95.71(16.53)
66.17(+58.12)

75.42(43.92)
79.29(+6.07)

79.60(14.53)

70.12(15.08)
73.78(16.3)

7049(:&4.88)
73.86(i6.6g)

Two-stage

|iF0rest;
[USAD
ISimCLR

| 72.4822.60)
| 72.22¢20.50
57.76(=3.5)

62.22(_+4.6!))
63.39(:'1_36)
37.59(+4.84)

72.26(+3.14)
72.72(10.97)

61.01(+2.60)

72.4812.69)
72.2% 00

B7.76(+3.25)

72.24(45 99)
72-38( +0.84)
58-65(3&3.06)

|RAID

81.83(12.90)

74.80(+4.19)

81.85(13.02) 81.83(12.96) 81.60(+3.05)




D-2. Experimental Results: Label efficiency

e RAID is performant with limited labeled data but benefit from more
labels.
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D-2. Experimental Results: Time complexity

e RAID achieves a practical balance between training efficiency and inference speed.
o Training time around 200s and inference time of 3.56ms
o Only the classifier needs to be retrained if new classes of anomalies.

1800
1700 -
1600 - 22228 Train time

XXX Inference time

J

e ey

Train time (s)
Inference time (ms)

e YeT e e e T aY e e e e Y eYaTaT e e e o aT e e Y
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D-3. Comparison RAID vs TLoss

e Better recall for normal scenarios.
e Struggles in discriminating coverage and normal scenarios
e Efficient in detecting interference scenarios (more impact on QoE during

experiment).
o More practical as it avoids more useless countermeasures deployments.

r1750
-1200
normal 1500 normal
1250 1000
E 1000 £ 800
ot coverage o~ coverage
: 750 3 600
= =
500 400
interference 250 interference 200
y 0 ’ , o]
normal coverage interference normal coverage interference
Predicted label Predicted label
(a) RAID (b) T-Loss
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Figure 5.4: Confusion matrix



5. Conclusion & Perspectives



In this thesis, we make the following contributions:

37/40

(@)

Real-world datasets for QoE of CG applications and labeled Wi-Fi datasets
collected over Cloud VR

Contrastive learning model that exploits temporal structure
Robust to data contamination and generalizes well to different LL datasets.

2-stage pipeline for AD with CATS and cause classification
More efficient than two-stage and SSL classification techniques even with few
labeled data

Reasonable training & inference time => practical for real deployments



e Improve CATS for AD in time series

o due to the DTW-based loss time complexity O(N?).

o Temporal modeling efficiency hindered due to the use of 1 negative in TCL
triplet loss.

o Improve (uncertainty estimation).

e Further data collection for Cloud VR experiments
o RAID has been tested on a controlled Cloud VR testbed with only

e Leverage for RCD
o Only Wi-Fi metrics used for RCD while our testbed provides much more
data sources.
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5-2. Perspectives

e [ew-shot learning for efficient labeling
e Novel class Discovery

e Causal Discovery
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and real cellular networks conditions, X. Marchal, P. Graff, J. R. Ky, T. Cholez, S. Tuffin, B.
Mathieu, & O. Festor. Journal of Network and Systems Management, 2023.

o OpenData:

Assessing unsupervised machine learning solutions for anomaly detection in cloud
gaming sessions, J. Ky, B. Mathieu, A. Lahmadi, and R. Boutaba. Workshop on
High-Precision, Predictable, and Low-Latency Networking (HiPNet 22), colocated with 18th
International Conference on Network and Service Management (CNSM), IEEE, Thessaloniki,
Greece, October 31 - November 4, 2022.

o Code:

Characterization and troubleshooting of CG applications on mobile network, J. R. Ky, B.
Mathieu, A. Lahmadi, R. Boutaba. Poster presentation at Network Trafic Measurement and
Analysis Conference (TMA 2022), Jun 2022, Enschede, Netherlands.


https://cloud-gaming-traces.lhs.inria.fr/data.html
https://github.com/joelromanky/cg-ano-detect-eval
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Collection of 4G network conditions on Orange commercial network

Txops Generation

Conditions Throughput Location
(Mbps)

File 2 160 Orange

File 3 120 Brélévenez

File 4 80 Brélévenez

File 5 _ Plemeur-Bodou Inter Txops Time = 75 - 48 =27
File 6 (Highway) 45 Guingamp - Lannion

Measurements conditions

46/ 40 Nb packets per txops = 6
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Characterization of 4G txops measured
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Characterization of 4G txops measured
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Max downlink throughput on the txops files
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Cloud Gaming KPIs collection on 4G networks

Connected to
the Windows
client

(%
o=t

\

Connected to
: the FTTH box
enp2s0

4

liant dolay, o Livebox
hetwork RTTS Mahimahi () e
WebRTC o
Windows CG CG Server
Client
TABLE I: Datasets summary.
Dataset  Train Test Dimensions Anomalies (%)
STD 80486 169706 14 52.57
Cloud Gaming GFN 27415 22667 14 55.36
50/40 XC 83611 17918 14 24.32




Data collection of Cloud VR data over Wi-Fi networks

51/40

a . Stats from Livebox )
VR Headset _ . Attenuator Livebox i
Device Stats |QoS Stats|  Controller [ ) Controller Controller| ~ Signal Strength
Battery Level |Framerate Free Air Time
CPULevel | Latency PHY throughput
< Retransmissions count | Control and
X automation /

: logs stats every 3 seconds

Y

%

T
1
____________ 1 omm ===
i : R ' 4 | Faraday cage 2
s 1 - - - = | I
i 1 "1 AP1 | (Livebox )|
g | attenuator : Ladsad (_w? SX_ ),' Cloud Gaming Server
0-15dB >
i attenuator
: 20dB
1 2oy
g ]
[ )
|
______ . ____Ghseae 20202 N
]
attenuator L e ’ Traffic generator
Faraday cage 3 0dB, 32dB Faraday cage 4 Infrastructure

Table 5.1: Dataset Summary

Legend
Physical Links
Ethernet

Wi-Fi through coaxial cable

usB

Logical Links

= = = = Attenuators control

- - - AP data collection

= = -9 Generated UDP traffic
Database upload

Class Train Size Test Size Number of Features Number of Time Steps
Normal 4718 1924 112 10
Coverage 2984 1270 112 10
Interference 1822 939 112 10
Overall 9524 4133 112 10




[0 Network issues for end-users.

0 Machine-learning approaches (ML) efficient in anomaly detection (AD) but
supervised learning .
0 due to the increasing network complexity.
0 => Use of models.

[0 Anomalies occur in the form of windows and metrics to better evaluate
performance of AD models are inacurrate.
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0 Demonstrate on synthetic models that existing window metrics wrongly

53/40

estimate AD models performance and propose WAD (Window Anomaly
Decision) approach.

Exhaustive evaluation of 8 unsupervised ML models with real-world
datasets collected on under 6
different

0 Study data contamination and window size impact on AD models.

Recommendation to network management experts on best models
regarding different industrial requirements.



Unsupervised ML models for anomaly detection

We compare several unsupervised ML models on their performance, robustness and time
complexity on AD on the CG time series datasets.

e Isolation based models Performance evaluation metrics :
o iForest
e One classification based models > Precision: P = —2%
o OC_SVM TP+FP
o Deep-SVDD | TP
e Reconstruction-based models » Recall:  R= ——
o PCA
o Auto Encoder > F1-Score: F1 = 2%~
o LSTM-VAE P+R
o DAGMM . MCC: MCC = TP.TN —FP.FN
o USAD J(TP+FP)(TP+FN)(TN+FP)(TN+FN)
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Unsupervised ML models: Isolation-based models

[

55/40

Isolation Forest: Performs splits based on
features to isolate anomalies from normal
instances.

One Class-SVM: Support Vector Machines
(SVM) based-approach to separate the
normal data from anomaly data with an
hyper-sphere.

Deep-SVDD: Deep-learning implementation
of OC-SVM that benefits from DL efficiency
on high-dimensional data.

*
Outliers /
Anomalies -
<*
N
Ellipse

Inliers /
~ Normal
Instances



Reconstruction of the data with principal

com ponents Original Data Component Reconstruction
. CE ] x[ | ]
l = = |
Constitued of an encoder, that £ 3 " i |
learns from inputs a low-dimensional representation ® B - H
of data, and a decoder that reconstruct original data
from latent variable.
Combination of LSTM and a VAE (AE with
bayesian inference).
: Combination of AE and a gaussian mixture @ =
model. B - cn e H /B
| \,\// = ‘/\:’ H ‘:f<i.:v>\j ; ‘l’\/ \’,\\
Two AE adversely trained and sharing the H/\E/ - sl N\
same encoder to reconstruct and discriminate for & =
better representation learning. o
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CG Datasets collected

» 5 static scenarios

% * 1 mobility scenario on 14 QoS/QoE features with a
highway time-step of 5Sms :
220 Mbps 160 Mbps
140 Mbps 120 Mbps . Bi.trate, RTT, _
80 Mbps Highway client-processing delay,

frame-rate, resolution,
freeze occurrences, frames
dropped, video reendering
jitter

* Downlink throughput
reachable on the 4G
emulated network condition.

-;-
S % e
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sonawn ENEEENENEN ENEEENENEN co-on  EECIEEEEEE KEEEEEEEE
e 0 0. 0.+ 109 0. I 0.410.2 07 05 0.3 JNIGHoUAlN 0.4 103 (0.1 0.2 ] 0.
Pwappoacres  ENEANEEEEN EEEEEEEEEE -vorocc:  EERECEEEEE  ENENENEREN
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(a) Prediction on anomaly windows

(b) Prediction on normal windows

Figure 3.1: Illustration of PW, PA, RPA and WAD approaches. 0 is normal and is 1 anomalous.
The anomaly score threshold to decide if an observation is anomalous or notis § = 0.5. Window
sizep =95, a=0.8.
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Unsupervised ML models for anomaly detection

Training time of the models.

A
\¥

2500
z 2000
E 1500
E

1000

500

LSTM-VAE  DAGMM USAD

iForest OC-SVM  Deep-SVDD PCA AE
Models

(a) Training time

Fig. 5. Train and inference time.
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AN
\

Inference time per window.
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(b) Inference time per window



Unsupervised ML models for anomaly detection

60/40

TABLE VI
ML MODELS RECOMMENDATION
Model Performance Robustness Deployment Explainability
IForest + e g o - -
OC-SVM - - 2 - - -
Deep-SVDD b i1 - - e ol » - -
PCA - ol 505 " e
AE o - e - -
LSTM-VAE e e o - - - --
DAGMM e i " + --
USAD ++ ++ e - -

++: good; +: somewhat good; =: somewhat bad; = =: bad.



F1-score has some limitations and should be coupled with MCC metric to avoid
erroneous conclusions on model performance.

Data contamination has different impact on unsupervised ML models.
[0 Isolation-based benefit from it until a certain level
[0 One class and reconstruction-based see their performance degrade (except
DAGMM and iForest)

ML models usually do not necessarily meet industrial considerations such as
robustness, performance, explainability, energy consumption...
0 Future work will consist in ML models for low-latency applications anomaly
detection from PCAP files.
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62

a similarity measure between
time series that seeks for the temporal alignment that
minimizes Euclidean distance between aligned series.

0 However, DTW is not differentiable.
was introduced using the soft-min operator
to make DTW differentiable.
TCL learns a temporal representation using a triplet loss with

Soft-DTW and is defined as follows:

N
Ly, = Z max(d(hy, k) — d(hy, k) + m, 0)

=1

1
d(hi, h;) = softDTW (h;, hj) — 5 (sof tDTW (hy, hy) + sof tDTW (hy, hy))

Temporal Contrastive
Learning




0 GCL learn representations at the instance level using the
while considering more negative pairs.
0 NT-Xent loss consider two views of same instance
as positive and view of different instances as
negative.

0 GCL also include the views generated through
negative data augmentation.

0 Consequently, instead of contrasting one positive
pair and N-1 negative pairs in NT-Xent =, GCL

contrasts
I 1 | exp (sim(z;, z;") /1)
GCL — — 5 og '
2Ni€BaUB+ Z:jeB and j:tiexp(Slm(Ziij)/T)
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Global Contrastive Learning
) 72,
\ kv) /’%3 -_’—,,—70 @
-7
Qure QO Zj
ZitNgyhy T *OZ'iO
\ ZJ—{—l\/?
Positive Negative
“~>  pair 7 pair
) ziTzv
sim(z;,z) =WHJZ‘||
j i

B= {B,,B*,B7}



[0 After training, we assume that the encoder has
learn sufficient information to be efficient for our
downstream task (AD).

0 Anomaly can be identified using a simple anomaly
score computed as follows:

S(Wt) = D(fy (Wt)rzcent)

i
Zeont = ——— ;
cent Nt-,-ain L

64

Feature Space

Anomaly
Score s



CATS: Data augmentation impact

gfn XC

O O k
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Figure 4.2: Ablation of negative data augmentations using F1-score for GFN and XC datasets.

65/40



CATS: Hyper-parameters sensitivity
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Dynamic Time Warping

Euclidean di Dynamic Time Warping

! } %—_"_—‘ "li
1N DTWy(z,z') = “aa(lzx}z . ( Z d(:z:.-,:z:;-)q)

Dynamic Time Warping (source : https:/frtavenar.githubi.io/blog/diw.htmi)

(ig)ew

distance matrix
: soft-DTW¥(z,z’) = min 7 d(z;,z")2
LTI )= 3

min "(ay,...,a,) = —7logZe"“‘/"
i

67

Orange Restricted



i

68

CATS addresses the limitations of traditional CL with temporal similarity
and negative data augmentation.

Empirical evaluations demonstrate performance in AD tasks on different
datasets while being robust to data contamination.

Some limitations remain:
0 Increased training time due to the SoftDTW time complexity O(N?)

[0 Triplet loss in TCL hinders the efficiency of temporal modeling due to the
use of 1 negative.



Sniff WiFi
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[ Generate different WiFi degradation scenarios:

0 Signal attenuation
0 2.4 GHz: between -45dB and -70dB
0 5 GHz: between -65dB and -90dB

0 Interference: using a neighboring LAN, we generate a traffic to reduce the
txops on the main LAN
O Leave 9-15% of txops on the main AP
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Anomaly detector

RAID
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Results of anomaly detectors of two-stage models.

Figure 5.3
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RAID: Per-class accuracy

288
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Figure 5.5: Per-class precision, recall and F1-score.
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Public Prize at Orange challenge « » at Orange Open
Tech Days, November 2023, Chatillon, France

Demo « » as part of ANR MOSAICO project at
Orange Open Tech Days, November 2023, Chatillon, France.

Awards at NeurlPS’22 competition track « Cross-Domain MetaDL »

at 10th TMA PhD school colocated with
TMA conference.



